

Department of Zoology

Program: BSc Medical

LIFE AND DIVERSITY OF ANNELIDA TO HEMICHORDATA (2.1)

SCHEME

Course Name	LIFE AND DIVERSITY TO HEMICHO		Course Type	Theory
Course Code	2.1		Class	BSc Medical
				(Zoology) IISem.
Delivery	Per week Lectures: 5, Tuto Total No. Classes Per Sem: Assessment in Weightage:	85(L), 63(T), - 25 (Pr		⁄o)
Course	Dr Pinky Deswal	Course Instructors	Theory: Dr Pink	y Deswal
Coordinator			Practical:Dr Pin	ky Deswal

COURSE OVERVIEW

The paper explores the diverse realms of invertebrate biology, delving into the intricate structures and behaviors of various phyla. It encompasses the systematic study of Annelida, Arthropoda, Mollusca, Echinodermata, and Hemichordata, unraveling their general characters, classifications, and economic significance. Students engage in detailed examinations, including type studies on Pheretima, Periplaneta, Pila, and Asteries, enhancing their understanding of metamerism, larval forms, and unique anatomical features. The course not only fosters a profound appreciation for invertebrate biodiversity but also equips students with analytical skills crucial for ecological and evolutionary studies.

PREREQUISITE

Physiology (structural and functional organization of animal body), Ecology (Relationship between organism and environment) and Evolution (How species change over time).

COURSE OBJECTIVE

The goal of this course is to familiarize students with fundamental concepts in the study of invertebrates life. It aims to cultivate a clear understanding of key ideas such as the classification and characteristics of different animal phyla, the ecological and economic importance of various species, and the evolutionary significance of morphological features. The course will equip students with essential skills to analyze and appreciate the diversity of the animal kingdom, fostering effective engagement with concepts in zoological sciences.

COURSE OUTCOMES (COs)

After the completion of the course, the student will be able to:

	CO No.	Course Outcomes
1		Define the general characters and classification of Annelida, Arthropoda, Mollusca, Echinodermata, and Hemichordata. KL1
2		Explain the economic importance and biodiversity of invertebrates, highlighting key contributions to ecosystems and human activities. KL2
3		Demonstrate the application of classification principles by identifying and categorizing organisms within each phylum. KL3
4		Analyze the metamerism in Annelida, trochophore larva in Mollusca, and Aristotle's Lantern in Echinodermata to understand their evolutionary significance .KL4
5		Develop a comparative study, contrasting the respiratory systems and locomotor adaptations across Annelida, Arthropoda, Mollusca, Echinodermata, and Hemichordata. KL5
6		Assess and evaluate the ecological impact of a specific organism from each phylum on its environment, considering both positive and negative aspects. KL6

COURSE CONTENT

Content

Phylum - Annelida:

- i) General characters and classification up to order level
- ii) Biodiversity and economic importance of Annelida
- iii) Type study Pheretima (Earthworm)
- iv) Metamerism in Annelida
- v) Trochophore larva:. Affinities, evolutionary significance

Phylum - Arthropoda:

- i) General characters and classification up to order level
- ii) Biodiversity and economic importance of insects
- iii) Type study Periplaneta

Phylum - Mollusca:

- i) General characters and classification up to order level
- ii) Biodiversity and economic importance
- iii) Type study Pila
- iv) Torsion and detorsion in gastropoda
- v) Respiration and foot

Phylum - Echinodermata:

i) General characters and classification up to order level

- ii) Biodiversity and economic importance
- iii) Type Study -Asteries (Sea Star)
- iv) Echinoderm larvae
- v) Aristotle's Lantern

Phylum – Hemichordata: Type study: Balanoglossus

<u>LESSON PLAN (THEORY AND TUTORIAL CLASSES)</u>

L. No	Topic to be Delivered	Tutorial Plan	Unit
1	Annelida:General characters		
	and classification up to order	MCQ test on characters,	
	level	economic importance and	1
2	Biodiversity of Annelida	classification -Annelids	
3	Economic importance of		
	Annelida		
4	Type study - <i>Pheretima</i>	Diagram test – all the systems	
	(Earthworm)-Digestive		
5			
	Type study - <i>Pheretima</i>		
	(Earthworm): Respiratory		

6	Type study - <i>Pheretima</i> (Earthworm): Circulatory		
7	Type study - <i>Pheretima</i> (Earthworm): Reproductive		1
8	Type study - <i>Pheretima</i> (Earthworm):Sense organs	Diagram test – all the three systems	
9	Type study - <i>Pheretima</i> (Earthworm): Excretory		
10	Type study - Pheretima -		
11	Metamerism in Annelida		
12		MCQ test of Metamerism	
	Metamerism in Annelida		
13	Trochophore larva: Affinities,	Test of full unit – 8 marks	
14	Trochophore larva: evolutionary significance	question	

1.5	A 41 1. C 1		
1	Arthropoda:General		
1	characters and classification up	MCO tast of above atoms	2
-		MCQ test of characters, classification, biodiversity and	2
16		economic importance	
		cconomic importance	
	Economic importance of insects		
	Type study – <i>Periplaneta</i>		
-			
	Type study – Periplaneta	Diagrammatic and explanation	
	Type stady Templaneta	test of systems	
	Type study – <i>Periplaneta</i>		
	Type study – <i>Periplaneta</i>		
	Type study – <i>Periplaneta</i>	Diagrammatic and avalenation	
	Type stady Templaneta	Diagrammatic and explanation test of systems	
+	Type study – <i>Periplaneta</i>	test of systems	
26	Molluscs: General characters		3
27	Classification up to order level	7400	
28	Biodiversity	MCQ test of the following test	
29	Economic importance		
30			
	Type study - <i>Pila</i>		
31	Type study - <i>Pila</i>		
32	Type study - <i>Pila</i>	Diagrammatic and explanation	
33	Type study - <i>Pila</i>	test	
34	Type study - <i>Pila</i>		3
35	Type study - <i>Pila</i>		3
36	Type study - <i>Pila</i>		
37	Type study - <i>Pila</i>		
38	Type study - <i>Pila</i>	Diagrammatic and explanation	
39	Type study - <i>Pila</i>	test	
	Type study - <i>Pila</i>	7	
41	Type study - <i>Pila</i>	7	
	Torsion and detorsion in		
	gastropoda		
46	Respiration and foot		
	Echinodermata: General		
	characters and classification up		
+	to order level	_	
48	Biodiversity	<u> </u>	
49	Economic importance	Diagrammatic and explanation	
50	Type Study -Asteries (Sea Star)	test of systems	
51	Type Study -Asteries (Sea Star)		4
52	Type Study -Asteries (Sea Star)		
53	Type Study -Asteries (Sea Star)		

54	Type Study -Asteries (Sea Star)		
55	II ypc bludy -hsieries (bed blur)	Diagrammatic and explanation	
56	Type Study -Asteries (Sea Star)	test of systems	
57	Type Study -Asteries (Sea Star)		
58	Echinoderm larvae		
59	Aristotle's Lantern		4
60	Hemichordata:		
	Type study: Balanoglossus		
61	i jpe staajt zattatte gresstis	Diagrammatic and explanation	
62	Type study: Balanoglossus	test of systems	
63	Type study: Balanoglossus		

Text Book

R.L. Kotpal, Modern Text Book of Zoology: Invertebrates -Animal Diversity , Rastogi Publications.

Reference Books

	E.O. Wilson. The Diversity of Life (The College Edition), W.W. Northern & Co.
	The diversity of living organisms, author: Richard Stephen Kent Barnes
	Brusca, R.C., Moore, W. and Shuster, S.M. (2016) Invertebrates. Sunderland, Massachusetts U.S.A.: Sinauer Associates, Inc., Publishers.
	Moore, J. and Overhill, R. (2006) An introduction to the invertebrates. Cambridge: Cambridge University Press.
Web/L	inks for e-content
	https://quizlet.com/138901563/invertebrate-comparison-chart-flash-cards/
	https://www.britannica.com/animal/invertebrate

□ youtube.com/playlist?list=PLQlnTldJs0ZQExTCjWSXXkCdfSvpjT5cO

 $\begin{tabular}{ll} \hline & https://www.uou.ac.in/sites/default/files/slm/MSCZO-501.pdf \\ \hline \end{tabular}$

PRACTICE QUESTIONS (QUESTION BANK)

1. What are the general characteristics of the	2. List and explain the orders within the phylum
phylum Annelida?	Annelida.
3. Discuss the economic importance of	4. Describe the metamerism in Annelida and its
Annelida with examples.	significance.
5. Explain the evolutionary significance of the	6. Provide an overview of the general characters
trochophore larva in Annelida.	of the phylum Arthropoda.
7. Classify Arthropoda up to the order level and	8. Discuss the biodiversity and economic
provide examples for each.	importance of insects.
9. Conduct a type study on Periplaneta and	10. How do arthropods exhibit adaptations to
highlight its unique features.	diverse habitats?
11. Outline the general characters of the phylum	12. Classify Mollusca up to the order level and
Mollusca.	provide examples for each.
13. Explore the biodiversity and economic	14. Conduct a type study on Pila and describe
importance of Mollusca.	its anatomy and behavior.
15. Explain the concepts of torsion and	16. Summarize the general characters of the
detorsion in Gastropoda.	phylum Echinodermata.
17. Classify Echinodermata up to the order	18. Discuss the biodiversity and economic
level and provide examples for each.	importance of Echinodermata.
19. Conduct a type study on Asterias (Sea Star)	20. Explain the structure and function of
and highlight its features.	Aristotle's Lantern in echinoderms.
21. Provide an overview of the general	22. Discuss the ecological significance of
characters of the phylum Hemichordata.	organisms within Hemichordata.
23. Conduct a type study on Balanoglossus and	24. How does Hemichordata differ from other
describe its anatomy.	invertebrate phyla studied?
25. Compare and contrast the metamerism in	26. Discuss the ecological roles of insects in
Annelida with segmentation in other phyla.	different ecosystems.
27. Explain the process of torsion and its	28. Compare the respiratory mechanisms in
adaptive significance in Gastropoda.	different classes of Mollusca.
29. How does Aristotle's Lantern contribute to	30. Analyze the evolutionary significance of
the feeding habits of echinoderms?	trochophore larva in Annelida.
31. Compare the evolutionary adaptations of	32. Discuss the evolutionary trends observed in
arthropods and annelids to terrestrial habitats.	different classes of Mollusca.
33. Explain how echinoderm larvae contribute	34. Highlight the evolutionary aspects of the
to the life cycle of echinoderms.	feeding structure Aristotle's Lantern.
35. How can the study of Annelida contribute to	36. Discuss the role of insects in pollination and
soil fertility in agriculture?	its impact on ecosystems.
37. Analyze the economic importance of	38. Evaluate the ecological significance of sea
mollusks in the food industry.	stars (Asterias) in marine ecosystems.
39. How can knowledge of Hemichordata	40. Compare the respiratory systems of insects
contribute to environmental conservation?	and mollusks.
41. Contrast the feeding mechanisms of	42. Compare the locomotion in Annelida and

earthworms and cockroaches.	Arthropoda.
43. Analyze the structural differences between	44. Compare the larval forms in Annelida and
the foot of a snail (Mollusca) and the foot of an	Echinodermata.
earthworm (Annelida).	
45. Explain how earthworms contribute to soil	46. Discuss the role of insects in the
structure and nutrient cycling.	decomposition of organic matter.
47. Explore the ecological relationships	48. How do sea stars (Asterias) influence the
between mollusks and their habitats.	diversity of marine ecosystems?
49. Discuss the ecological implications of	50. Evaluate the impact of anthropogenic
habitat preferences in Hemichordata.	activities on the biodiversity of the studied
	invertebrate phyla.

B.Sc.-Semester II PRACTICAL

(A) Classification up to orders with ecological note and economic importance of the following group of animals:

(B) Study of the following permanent stained preparations:

1. T.S. Pheretima (pharyngeal and typhlosolar regions), Setae, septal nephridia and spermathecae
of Pheretima.
2. Trachea and mouthpmts of cockroach.
3.Statocyst of Palaemon.
4. Glochidium larva of Anodonta; radula and osphradium of Pila.
5. T.S. Star fish (arm)
6. T.S. Balanoglossus (through various regions).

(C)Demonstration by C. D.:

1 . Mouth parts and trachea of Periplanata (cockroach)
Radula of Pila; Pedicillarae of Asterias.
2. Setae of earthworm
and mouth parts of Honey bee
House fly and cockroach

.

(D) Preparation of models of the different systems of the following animals:

1. Earthworm: Digestive
reproductive and nervous systems.
2. Grasshopper/ cockroach: Digestive
reproductive and nervous systems.
3. Pila: Pallial complex
digestive and nervous systems

(E) Cell biology and Genetics:

- 1. Salivary gland and polytene chromosomes of Drosophila/Chironomus.
- 2. Numericals based on three point test cross

(F) Project:

- 1. Survey- Diversity of particular family/taxa in your surrounding area
- 2. Vermicomposting: Earthworm rearing and economics of the project
- 3. Evolutionary significance of larvae belonging to different group of invertebrates