

Department of Chemistry

Program: BSc IInd Physical Chemistry (CH-302)

SCHEME

Course	Physical Chemistry		Course Type	Theory
Name				
Course Code	СН-302		Class	BSc III Sem.
Instruction	Per week Lectures: 2, Tutorial:, Theory: 2, Practical: -			
Delivery	Total No. Classes Per Sem: 32(L), Assessment in Weightage: Sessional (20%), End Term Exams (80%)			
Course	Dr Manish Kumar Course Theory: Dr Manish Kumar		nish Kumar	
Coordinator		Instructors	Practical: Dr	Manish Kumar

COURSE OVERVIEW

Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, biochemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology.

PREREQUISITE

Thermodynamics, Distribution law, Chemical equilibrium and Extensive and Intensive properties

COURSE OBJECTIVE

The objective of this course is to study the Basic terms used and Ist law of thermodynamics which give idea about conversion of different forms of energy. It reflects about the internal energy and conversion of heat and work which helps to understand the conversion of different forms of energy. It also helps in study calculation of different terms in isothermal and adiabatic processes.

This Course helps in understanding the formation of different reversible reaction and chemical equilibrium constant, It also helps to understand solubility of different substances in polar and non-polar solvents.

COURSE OUTCOMES (COs)

After the completion of the course, the student will be able to:

CO No.	Course Outcomes
1	Remember the type of system and various thermodynamical properties.

2	Remember the work, heat, heat capacity, enthalpy C_p , C_v and work and heat of different thermodynamical process.
3	Understand the equilibrium constant in terms of pressure, conc. And activity.
4	Understand the distribution of solute in polar and non-polar solvents.

COURSE CONTENT

Content

Thermodynamics-I

Definition of thermodynamic terms: system, surrounding etc. Types of systems, intensive and extensive properties. State and path functions and their differentials. Thermodynamic process. Concept of heat and work. Zeroth Law of thermodynamics, First law of thermodynamics: statement, definition of internal energy and enthalpy. Heat capacity, heat capacities at constant volume and pressure and their relationship. Joule's law – Joule – Thomson coefficient for ideal gass and real gas: and inversion temperature.

Thermodynamics-II

Calculation of w.q. dU & dH for the expansion of ideal gases under isothermal and adiabatic conditions for reve rsible process, Temperature dependence of enthalpy, Kirchoffs equation. Bond energies and applications of bond energies.

Chemical Equilibrium

Equilibrium constant and free energy, concept of chemical potential, Thermodynamic derivation of law of chemical equilibrium. Temperature dependence of equilibrium constant; Van't Hoff reaction isochore, Van't Hoff reaction isotherm. Le-Chatetier's principle and its applica tions Clapeyron equation and Clausius – Clapeyron equation its applications.

Distributioln Law

Nernst distribution law – its thermodynamic derivation, Modification of distribution law when solute undergoes dissociation, association and chemical combination. Applications of distribution law: (i) Determination of degree of hydrolysis and hydrolysis constant of aniline hydrochloride. (ii) Determination of equilibrium constant of potassium tri-iodide complex and process of extraction.

LESSON PLAN (THEORY AND TUTORIAL CLASSES)

L. No	Topic to be Delivered	Tutorial Plan	Unit
1	system, surrounding etc. Types of		
	systems, intensive and extensive	Practice Questions on different	
	properties. State and path	thermodynamic properties and	1
	functions and their differentials	processes.	
2	Thermodynamic process.		
	Concept of heat and work.		
	Zeroth Law of thermodynamics		
3	First law of thermodynamics:		
	statement, definition of internal		
	energy and enthalpy.		
4	Heat capacity, heat capacities at	Practice Questions on Joules law	
	constant volume and pressure	and Inversion temperature.	
	and their relationship		
5	Joule's law – Joule – Thomson		
	coefficient for ideal gass and real		
	gas: and inversion temperature.		

6	Questions on Ist law of		
	thermodynamics		
7	Questions on Joules law		1
8			
	Questions on Work done in	Practice Questions on work and	
	different process.	heat.	
9	Calculation of work, heat, internal		
	energy and enthalphy.		
10	Reversible isothermal process	Practice questions on work done	2
	with different properties	of Isothermal and adiabatic	
11	Adiabatic reversible process and	process	
	irreversible process		
12	Temperature dependence of		
	enthalphy		
13	Kirchoffs equation		
14	Bond energies and application		
15	Questions on isothermal		
	reversible process		
16	Questions on Bond energy and		3
	applications		
17	Equilibrium constant and free	Practice questions on Equilibrium	
	energy,	constant and free energy	
18	Thermodynamic derivation of law		

	of chemical equilibrium		
19	Temperature dependence of		
	equilibrium constant		
20	Van't Hoff reaction isochore,		
	Van't Hoff reaction isotherm		
21	Le-Chatetier's principle and its	Practice questions on Le-chatliers	
	applications	principle	
22	Clausius – Clapeyron equation		
	its applications		
23	Questions on Equilibrium		
	constant		
24	Questions on Le-Chatetier's		
	principle		
25			4
	Nernst distribution law and its	Practice questions on Nernst	
	derivation	distribution law	

26	Modification of distribution law		
	when solute undergoes	Practice questions on degree of	
	dissociation, association and	hydrolysis	
	chemical combination		
27	Applications of distribution law	Practice questions on solubility of	
28	Determination of degree of	compounds in different medium.	
	hydrolysis		
29	Determination of equilibrium		
	constant of potassium tri-iodide		
	complex		
30	process of extraction		
31	Question on Distribution law		
32	Question on Degree of		
	hydrolysis		

Text Book

A text book of Physical Chemistry, Vol III by K.L.Kapoor, A Text-Book Of Physical Chemistry Vol II by K.L.Kapoor Essentials of Physical Chemistry by B.R. Bahl, B.S. Bahl, and G.D. Tuli **Reference Books**

Principal of Physical Chemistry by Puri Sharma Pathania Physical Chemistry 3rd edition by Thomas Engel and Philip Reid

Physical Chemistry 2nd edition by Atkins

Web/Links for e-content

•https://en.wikipedia.org/wiki/Thermodynamics#Introduction

• https://youtu.be/ITwqsPnSLZ0?si=iMIVowZ4sgjAsqrQ

https://youtu.be/R-EgSYeZGQU?si=hnLjPj4hcSljT3p9

PRACTICE QUESTIONS (QUESTION BANK)

S No	Problem
1	What is 1 st law of thermodynamics?
2	What do you understand by extensive and Intensive properties?
3	Define State functions and path functions.
4	What is zeroth law of thermodynamics?
5	How do heat and work are related to each other?
6	Define internal energy change and its conventions?
7	Work and heat are path functions. Explain by taking examples of different processes.
8	What is joule's law and state inversion temperature.
9	What is work done and heat in an isothermal reversible expansion?
10	Calculate different thermodynamic properties in adiabatic reversible expansion.
11	Discuss the Kirchoff's law and equation.
12	Define bond energies and how it is been calculated for a thermodynamic process.
13	Differenciate reversible and irreversible processes.
14	How does temperature effect the enthalpy of a reaction.
15	Discuss heat capacity
16	Prove that $C_p - C_v = R$.
17	Describe Equilibrium constant and calculate it in terms od pressure, conc. And activity.

18	What is chemical potential?
19	What is law of chemical equilibrium?
20	Explain Van't Hoff isotherm
21	Explain Van't Hoff isochore.
22	Derive expression of Clausius – Clapeyron equation
23	State applications of Clausius – Clapeyron equation
24	What is Le-Chatetier's principle?
25	What are the effect of the various factors on equilibrium constant?
26	State and explain Nernst distribution law
27	Derive an expression of Nernst distribution law
28	Derive an expression for solute undergoes association, dissociation and solvation.
29	Discuss Degree of hydrolysis and calculate hydrolysis constant.

30	Discuss effect of temperature on solubility.
31	Discuss degree of hydrolysis of aniline hydrochloride.
32	Determine equilibrium constant of potassium tri-iodide complex.

Department of Chemistry

Program: B.Sc.(Non medical & Medical) Inorganic Chemistry (CH-301)

SCHEME

Course Name	Inorganicl Ch	nemistry	Course Type	Theory
Course Code	CH-30	1	Class	B.Sc 3rd sem
Instruction Delivery	Per week Lectures: 2,Tutorial -1, Practical: - Total No. Classes Per Sem: 72(L), 28(T), -(P) Assessment in Weightage: Sessional (20%), End Term Exams (80%)			
Course Coordinator	Mrs. Ritu	Course Instructors	Theory: Mrs. R Practical:	itu

COURSE OVERVIEW

Inorganic chemistry is concerned with the quantum mechanics, spectroscopy & molecular structure.

PREREQUISITE

Basics of chemistry, Knowledge of inorganic chemistry terms, periodic table & coordination chemistry.

COURSE OBJECTIVE

The objective of this course is to explore the knowledge of d- block elements. This course will also provide us knowledge of co-ordination chemistry & non aqueous chemistry.

COURSE OUTCOMES (COs)

After the completion of the course, the student will be able to:

CO No.	Course Outcomes
1	Remember the basic concept of d- block elements.
2	Understand the 1st,2nd & 3rd transition series.
3	Apply the various concepts of co-ordination compounds.
4	Analyze the application of Non-aqueous solvents.

CONTENT

Content

Definition of transition elements, position in the periodic table, Generall characteristic and properties of d- block elements, structure and properties of some compounds of transition elements - Tio2, VoCl2, FeCl3, CuCl2 & NiCo4.Comparison of properties of 3d- elements with 4d and 5d elements with reference only to ionic radii, Oxidation State ,magnetic and Spectre properties and stereochemistry. coordination compounds- Werner's theory of coordination compounds, effective atomic number, Chelates, Nomenclature of coordination compounds, isomerism in coordination compound, valence bond theory of transition metal complexes. Non Aqueous solvents- physical properties of solvent ,types of solvent and their general characteristics ,reactions in non aqueous solvent with reference to liquid Ammonia and liquid sulphur dioxide.

LESSON PLAN (THEORY AND TUTORIAL CLASSES

L. No	Topic to be Delivered	Tutorial Plan	Unit
1	Definition of transition elements		
	position in the periodic table		
2	Electronic configuration of		1
	3d,4d and 5D series.		
3	General characteristics and		
	properties of 3d series elements		
4	Structure and properties of Tio2,		
	VoCl2		
5			
	Structure and properties of		
	FeCl3, CuCl2 and NiCo4		

_				
	6	Comparison of properties of 3D	Discussion of previous year	
		element with 4d and 5d element	questions	
		with reference to ionic radii	1	
		,Oxidation State.		
	7			
		Magnetic and spectral properties		
		and stereochemistry.		2
	8			
	0	Revision of 3d -series		
0				
9				
		Devicion of 4d and 5d cories		2
	10	Revision of 4d and 5d series		3
	10	Coordination		
		compounds, werner's theory of		
		coordination compound		
	11	Effective atomic number and		
		chelates		
	12	Nomenclature of coordination		
	13	Isomerism in coordination		
		compounds		
	14	Valance bond theory of		
		transition metal complexes		
Γ	15	Revision of coordination		
1		compound		
F	16	Non aqueous solvent physical		
1		properties of solvent		
	17	Types of solvent	Practice of VBT	4
1		J F	1	

18	General characteristics of	
	solvent	
19	Reactions in liquid ammonia	
20	Reactions in liquid ammonia	
21	Reactions in liquid SO2	

22		Discussion of previous year		
	Reactions in liquid SO2	questions paper		
23	Revision of non aqueous			
	solvent			
24	Revision of non aqueous solvent			
		<u> </u>		
•				
•				

Text Book

"Modern approach to Inorganic chemistry by Dr. S.P.Jauhar"

"Inorganic chemistry by Pardeep publication"

Reference Books

- "Advance in inorganic chemistry by S.K.Agarwal".
- "Inorganic chemistry by Dr.S.K.Bansal"

Web/Links for e-content

□ https://youtu.be/IV4wQMI_EG4?si=gXlbITQYM6vyFXic

- □ https://youtu.be/VlpNYNhudko?si=6RTZHa0kXJYhOg2k
- □ https://youtu.be/C2RoCtcgM10?si=5AMB3ooEVuUsgOPk

PRACTICE QUESTIONS (QUESTION BANK)

S No	Problem
1	Describe the geometry of NiCo4.
2	Explain the properties of Tio2.
3	Discuss the anomalous high ionization energy of Copper and chromium.
4	Why 3d series complexes are mainly high spin while 4d and 5d transition series complexes are of low spin?
5	Discuss the variation of radii of atoms and ions of 2nd and 3rd transition series in comparison with first transition series.
6	Why d- block elements are called transition elements?
7	
8	What are postulates of werner's coordination theory? What are non aqueous solvent? Discuss their classification
-	
9	Discuss the important advantages of liquid sulphur dioxide as solvent in spite of its toxic nature.
10	Discuss the advantage of liquid ammonia.
11	Draw the structure of VoCl2.
12	

Department of Chemistry

Program: B.Sc.(Non medical & Medical) Organic Chemistry (CH-303)

SCHEME

Course Name	Organic Che	emistry	Course Type	Theory
Course Code	se Code CH-303		Class	B.Sc 3rd sem
Instruction Delivery	Per week Lectures: 2,Tutori Total No. Classes Per Sem: 7 Assessment in Weightage: S	al -1, Practical: - 72(L), 28(T), -(P) essional (20%), End Te	erm Exams (80%)	
Course Coordinator	Mrs. Ritu	Course Instructors	Theory: Mrs. Ri Practical:	itu

COURSE OVERVIEW

Organic chemistry is concerned with the application of UV Spectroscopy & Alcohols, phenols & acids.

PREREQUISITE

Basics of chemistry, Knowledge of organic chemistry terms, knowledge of alcohols, phenols & acids.

COURSE OBJECTIVE

The objective of this course is to explore the knowledge of Alcohols, phemols & Carboxylic acids. This course will also provide us knowledge of UV spectroscopy .

COURSE OUTCOMES (COs)

After the completion of the course, the student will be able to:

CO No.	Course Outcomes
1	Remember the basic of alcohols & epoxides.
2	Understand the concept of Phenols.
3	Apply the various concepts of UV spectroscopy.
4	Analyze the application of Carboxylic acid & acid derivatives.

COURSE

Content

Alcohols -monohydric alcohol nomenclature ,methods of formation by reduction of aldehydes, ketones carboxylic acid and esters. Hydrogen bonding, acidic nature , reactions of alcohols, Dihybric alcoholsnomenclature, method of formation, chemical reactions of vicinal glycols, oxidative clevage, Pinacol-pinacolone rrangemeant. Synthesis of epoxides, Acid & base catalyzed ring opening of epoxides, orientation of epoxide ring opening, reactions of Grignard and Organolithium reagents with epoxides, Phenols -nomenclature, structure and bonding, preparation of phenols, physical properties and acidic character, comparative acidic strength of alcohols and phenols, resonance, stabilization of phenoxide Ion, Reaction of phenols -electrophilic aromatic substitution mechanism of Fries rearrangement, Claisen rearrangement, Reimer-Tiemann reaction, Kolbes reaction, and Schotten Baumann reactions, Ultraviolet absorption spectroscopy -Absorption laws (Beer- Lambert law), molar absortivity, presentation and analysis of UV spectra, type of electronic transitions, effect of conjugation, concept of chromophore and auxoochrome, Bathochromic , hypsochromic & hypochromic shifts. UV spectra of conjugated enes & enones. Woodward fiser rule, calculation of Max. wavelength of simple conjugated dienes & Alpha ,Beta -unsaturated ketone, application of UV Spectroscopy in structure elucidation of simple organic compounds, Carboxylic acids and acid derivatives -nomenclature of carboxylic acid, structure and bonding ,physical properties of carboxylic acid, acidity of carboxylic acid ,prepartions of Carboxylic acid, Reactions of Carboxylic acid, HVZ reaction, reduction of Carboxylic acid ,mechanism of decarboxylation, structure nomenclature and preparation of acid Chloride, esters, amides & acid anhydrides, relative stability of acyl derivatives, physical properties, inter conversion of acid derivative by nucleophilic acyl substitution, mechanism of esterisification and hydrolysis (acidic and basic).

LESSON PLAN (THEORY AND TUTORIAL CLASSES

L. No	Topic to be Delivered	Tutorial Plan	Unit
1	Alcohol -monohydric alcohol,		
	nomenclature		
2	Method of formation by		1
	reduction of aldehyde and		
	ketone		
3	Reduction of carboxylic acid		
	and Ester ,hydrogen bonding,		
	acidic nature		
4	Reactions of alcohols, dihydric		
	alcohol- nomenclature		
5			
	Methods of formation, chemical		
	reactions of vicional glycols		

	6	Oxidative cleavage and pinacol	Discussion of previous year	
	-	-Pinacolone rearrangement	questions	
		synthesis of epoxide	questions	
	7	Acid and base catalyzed ring		
		opening of epoxide orientation		
		of epoxide ring opening		
-	8	Reactions of Grignard and		
	0	organo- Lithium reagents with		
		epoxide		
0		oponido		
7				
		Phenols- nomenclature		
		structure and bonding		2
	10	Preparation of phenols physical		
	10	properties and acidic character.		
┢	11	Comparative acidic strength of	1	
	11	alcohol and phenols resonance		
		stabilization of phenoxide ion		
┢	12	Electrophilic aromatic substitution.		
	12	Fries rearrangement and Claisen		
		rearrangement		
	13	Reimer- Tieman reaction,		
		Kolbes reaction and schotten -		
		Baumann reaction		
	14	Ultraviolet absorption		
1		spectroscopy introduction		
	15	Beer-Lambert law,molar		
		absorptivity		
	16	Presentation and analysis of UV		
	-	spectra, types of electronic		
1		transition		

17	Effect of conjugation, concept	Practice of numericals based on	3
	of chromophore, auxochrome,	UV spectra	
	Bathochromic, hypsochromic,		
	hyperchromic and hypochromic		
	shifts.		
18	UV spectra of conjugated enes		
	and enones.		
19	Woodward -Fieser		
	rules, calculation of maximum		
	wavelength of simple		
	conjugated dienes and Alpha		
	Beta-unsaturated ketones.		
20	Application of UV spectroscopy		
21	Carboxylic acid -nomenclature,		
	structure and bonding ,physical		
	properties		

22		Discussion of previous year	4	
	Acidity of carboxylic acid,	questions paper		
	effect of substituent on acid			
	strength, preparation of			
	carboxylic acid			
23	Reactions of carboxylic acid,			
	HVZ reaction, reduction of			
	carboxylic acid ,mechanism of			
	decarboxylation		-	
24	Structure ,nomenclature and			
	preparation of acid chloride,			
	Ester			
	Amides and acid anhydride,			
	relative stability of acyl			
	derivative		-	
	Physical properties,			
	interconversion of acid			
	derivatives by nucleophilic acyl			
	substitution			
	Mechanism of esterification and			
	hydrolysis (acidic and basic)			
		-		

Text Book

"Modern approach to Organic chemistry by Dr. J. M. Sehgal"

"Organic Chemistry by S. L Vashishta"

Reference Books

- "Advance Organic chemistry by S. Chand".
- "Advance Organic Chemistry by Jagdamba Singh".

Web/Links for e-content

- □ https://youtu.be/J4vEsZLZnyA?si=NlU3cMp2vadRMrjN
- □ https://youtu.be/cNGPBZk3Qxw?si=PtDJPVEhMOe6ZQ2O
- □ https://youtu.be/nmvyZF0RyRg?si=3lNK-Y7H_W6wL-UN

PRACTICE QUESTIONS (QUESTION BANK)

S No	Problem
1	Explain with mechanism dehydration of alcohol with concentrated sulphuric acid.
2	Explain with mechanism pinacol- pinocolone rearrangement.
3	Why phenols are more acidic than alcohols?
4	Describe fries rearrangement.
5	Explain the relative acidic strength of Ortho, meta and para nitrophenol.

6	Differentiate Chromophone and Auxochrome.
7	
	Define Rear lembert's law and maler absorptivity
8	What is the difference between red shift and hlue shift?
0	what is the difference between red shift and blue shift?
9	Describe the important applications of UV spectroscopy.
10	
10	why amides are least reactive of all acid derivative towards nucleophilic acyl substitution
	reaction?
11	Explain the relative acidic strength of formic acid, benzoic acid and acetic acid.
10	Explain the mechanism of hydrolysis of Ester in eaidie and basis medium
12	Explain the mechanism of hydrorysis of Ester in actore and basic medium.

Department of Physics

Program: B.Sc. (Non- Medical)

(PHY -302)

SCHEME

Course Name	Optics I		Course Type	Theory		
Course Code	PHY-302		Class	B.ScII SEM)	YEAR	(III
Instruction Delivery	Per week Lectures: 2, Tutor Total No. Classes Per Sem: (Assessment in Weightage: S	ial:1, Practical: - 50(L), 15(T), -(P) essional (20%), End Te	erm Exams (80%)			
Course Coordinator	Dr. Savita Devi	Course Instructors	Theory: Ms. Jyc Practical: -Dr. S	oti Savita Dev	'n	

COURSE OVERVIEW

Optics is the branch of physics which is concerned with light and its behaviour pattern and properties.

PREREQUISITE

A basic understanding of waves and their properties like wavelength ,frequency and amplitude.

COURSE OBJECTIVE

To make students familiar with both historically important optical; experiments and modern optical instruments and methods.

COURSE OUTCOMES (COs)

After the completion of the course, the student will be able to:

CO No.	Course Outcomes
1	Students will learn about the properties of light, such as reflection,refraction and diffraction.
2	Student will learn about the resolving power of different optical instruments and how holography works.
3	Student will able to learn about optical fibres and their application in communication.
4	Student will learn to apply and identify formulas related to optics.

COURSE

CONTENT

Content

Speed of Transverse waves on a uniform string ,Speed of longitudinal waves in a fluid superposition of waves(physical idea),Fourier Analysis of complex waves and its application for the solution of triangular and rectangular waves ,Half and Full wave rectifier outputs.Fourier transforms and its properties,application of Fourier transform to following functions:

(i) $f(x)=e^{-x}$ (ii) f(x)=1 [x] < a = 0 [x] > a

Matrix method in par-axial optics ,Effects of translation and refraction,derivation of thin lens formulae ,unit plane,nodal planes ,system of thin lenses,Chromatic spherical coma,astigmatism and distortion aberrations and their remedies.

Interference by Division of wave -front :Fresnel Bi-prism and its applications for determination of wavelength of sodium light and thickness of mica sheet, Lioyd's mirror , Phase change on reflection

LESSON PLAN (THEORY AND TUTORIAL CLASSES)

L. No	Topic to be Delivered	Tutorial Plan	Unit
1	Speed of transverse waves on a		
	uniform string		
2	Speed of longitudinal wave in a		1
	fluid		
3	Fourier analysis of complex	Explanation , Theory , derivation	
	wave and its application for the		
	solution of triangular and		
	rectangular waves.		
4	Superposition of Waves		
	Full and Hall wave rectifier	Derivation	
	Full and Hall wave rectifier		
5	outputs .Fourier transforms and		
5	its properties		

6	Fourier Transform and its	Definition and Derivations	
	properties, Application of		
	Fourier Transform to following		
	functions.		
	(i) $f(x) = e^{-x}$		
	(ii) $f(x) = 1[x] < a$		
	0[x]>a		
7	Matrix method in par-axial		
	optics, effects of translation and		
	refraction, derivation of thin		
	lens and thick lens formulae,		
8	Unit plane ,nodal plane ,system		2
	of thin lenses ,chromatic	Definition ,Diagram,Derivation	
	spherical coma, astigmatism and		
	distortion aberrations and their		
	remedies.		
		Practice on the questions of	
9	Revision	Geometrical optics	
10	Interference		
	by Division of wave front:		2
	Fresnel Bi-prism and its	Theory, Explanation, Derivation	5
	applications for determination		
	of wavelength of sodium light		
	and thickness of mica sheet		
11	Lioyd's mirror ,Phase change on		
	reflection.		
		Practise on the questions of	
12	Revision	Interference	

Text Book

Optics by Neeraj Dahiya

Optics by Anil kumar Singhal

Reference Books

"Optics" by Ajay Ghatak "Optics" by Tata Mc Graw Hill

Web/Links for e-content

□ https://youtu.be/2YAEn7TQ-j8?si=rspdfHdvFnpcKQ2Z

 $\label{eq:https://youtu.be/cbh52-5HJjE} i=q8NZJQt-zFha-PqFhttps://youtu.be/cbh52-5HJjE?si=q8NZJQt-zFha-PqF$

https://youtu.be/5AqzGmbQ9Ls?si=pSCRDmkUPc3ji3A2s PRACTICE QUESTIONS (QUESTION BANK)

S No	Problem
1	Apply Fourier Theorem to analyse the output of a full wave rectifier?
2	Find the Fourier transform of : $f(x) = \{1 \text{ for } x < a\} $ {0 for $[x] > a\}$
3.	Explain Fourier Sine and cosine transformation?
4	Explain four forms of Fourier Integral.
5	What are even and odd functions?
6	Define Drichlet conditions .
7	State the Principal of superposition of waves?
8	Write one application of Fourier Transform?
9	What is chromatic aberration? How an achromatic combination is obtained ? Explain.
10	What is spherical aberration in lenses? Discuss it removal by using two plano convex lens of the same material separated by a finite distance.
11	Derive an expression for the focal length of a thin lens by method of system of matrix?
12	Discuss the formation of fringes by Lloyd's mirror and explain why central fringe is black? Find the expression for fringe width.
13	Give Theory and discuss in detail how to determine wavelength using Biprism.

14	State and prove Stokes law?
15	Two coherent sources of intensity ratio 100:1 interfere. Deduce the ratio of intensity between Maxima and minima in the in the interference pattern.
•	
•	•
•	

Department of Physics

Program: B.Sc. Non Medical

Session (2024-25)

Computer Programming & Thermodynamics (PHY 301) SCHEME

Course Name	Computer Progr	amming &	Course Type	Theory
	Thermodyn	amics		
Course Code	Course Code PHY 301		Class	B.Sc. N.M. III Sem
Instruction	Per week Lectures: 6, Theo	ory: 02, Tutorial:0, Pr	actical: 04	
Delivery	Total No. Classes Per Sem: 72(L), 24(T), - 48(P) Assessment in Weightage: Sessional (20%), End Term Exams (80%)		%)	
Course	Dr. Savita Devi	Course Instructors	Theory: Dr. Sav	ita Devi
Coordinator			Practical: Dr.	Savita Devi

COURSE OVERVIEW

Computer is a very versatile general purpose electronic device which processes large amount of information at high speed and produces result in a required format. Now a days computers are being used in almost every field of life. Thermodynamics deals with the study of energy transformations like heat energy into various other forms of energy and the relationship among various physical properties of substances which are affected by these transformations

PREREQUISITE

Computer, heat, temperature

COURSE OBJECTIVE

Objective of computer programming is to understand the Computer organisation, algorithm development and fortran preliminaries. Objective of thermodynamics is to understand the concept of heat in motion.

COURSE OUTCOMES (COs)

After the completion of the course, the student will be able to:

CO No.	Course Outcomes
1	Understand the formation of algorithm and flowcharts of a given program
2	Define and explain the Physics governing heat laws
3	Get an introduction to the discipline and role of computer programming and thermodynamics in modern society
4	Solve the problems based on programming and thermodynamics

COURSE CONTENT

Content

Computer Programming: Computer organisation, binary representation, algorithm development, flowcharts and their interpretation

FORTRAN preliminaries: Integer and floating point arithmetic expression, built in functions, executable and non executable statements, input and output statements, Formats, IF, DO and GO TO statements, dimension arrays, statement function and function subprogram.

Thermodynamic I: Second law of thermodynamics, Carnot theorem, absolute scale of temperature, absolute zero, entropy, show that dQ/T = Q.

T-S diagram, Nernst heat law, Joule's free expansion, Joule Thomson experiment, Joule Thomson effect, liquification of gases, air pollution due to internal combustion engine.

Thermodynamic II: Derivation of Claucius Claperyron latent heat equation, phase diagram and triple point of a substance, development of Maxwell thermodynamical relations, application of Maxwell relations in the derivations of relations between entropy specific heats and thermodynamic variables Thermodynamic functions; Internal energy U, Helmholtz function F, enthalpy H, Gibbs function G and the relation between them.

L. No	Topic to be Delivered	Tutorial Plan

LESSON PLAN (THEORY AND TUTORIAL CLASSES)

L. No	Topic to be Delivered	Tutorial Plan	Unit
1	Computer organisation		
2	Binary representation		1
3	Algorithm development	Define, expression,	1
	Flowcharts and their	explanation	
4	interpretations		
5			
	FORTRAN preliminaries		

6	Integer and floating point arithmetic expression	Itroduction, derivation	
7	Built in functions	Define, expression,	1
8	Executable and non	explanation	
	executable statements		
9	Input and output statements		
10	Formats		
11	IF DO and GO TO statements	State, expression, explanation	
12	Dimension arrays statement		
	function and functions of		
	subprogram		
13	Revision	Discuss and Practice questions	
14	Question on interference	on programming	
15			
	Thermodynamics	introduction	2
16	Second law of	Expression and explanation	2
10	thermodynamics		
17	Carnot theorem		
18	Absolute scale of temperature	State, Expression and	
19	Absolute zero	explanation	
20	Entropy		
21	dO/T = O	Explanation and derivation	
22	T- S diagram Nernst heat law	State, expression and	
23	Joules free expansion	explanation	
24	Joules Thomson experiment	State, expression	
25	Joule Thomson effect	T . 1 . 1	2
26	Liquification of gases	Introduction	2
27	Air pollution due to internal	State employed and employed	
20	Compution engine	state, expression and explanation	
28	Kevision	Practice the questions on	
29	Questions	Thermodynamics -I	
30	Thermodynamics II	Introduction	

31	Derivation of Claucius	State, expression and	3
	Claperyron latent heat of	explanation	
	equation		
32	Face diagram and triple point of		

	a substance		
33	Development of Maxwell	IDerivation and explanation	
00	thermodynamical relations	I I I I I I I I I I I I I I I I I I I	
34	Application of Maxwell	State, discussion	
_	relations in the derivation of		
	relations between entropy		
	specific heat and		
	thermodynamic variables		
35	Thermodynamic functions		
36	Internal energy	State, expression and	
37		explanation	
		State expression and	
		explanation	
		explanation	
	Helmhols functions		
38	Enthalpy		
		State, expression and	
		explanation	
		3	
30	Gibbs function		
40	Entropy change in reversible f	State, expression and	
40	process	explanation, Discussion	
41	Entropy change in irreversible		
	process, Principle of		
	degradation of energy		
42	RevisionQuestion on		
	polarization		
43		·	
44			

Text Book

Dr. M.S.Sheoran, Jaivir Singh, Amar Singh, Pradeep Ahlawat

Reference Books

Dr.S.D.Aghav, V.K.Dhas, Dr.P.S. Tambade, B.M.Laware, S.R.De Groot and P. Mazur

Web/Links for e-content

"ebookselibrary.com/institute/book-detail/higher-education/physics/COMPUTER-PROGRAMMING,-THERMODYNAMICS-1219#" https://www.ebookselibrary.com/institute/bookdetail/higher-education/physics/COMPUTER-PROGRAMMING,-THERMODYNAMICS-1219#

PRACTICE QUESTIONS (QUESTION BANK)

Sr. No.	Problem	
1	Write the preliminary to draw a flowchart	
2	Give limitation of flowcharts	
3	Explain formatted input output statements used	
	in 4th run	
4	State and explain the first and second law of	
	thermodynamics discuss the significance of the	
	second law	
5	State and prove the carnot theorem	
6	Discuss joule Thomson experiment	
7	A gas atmospheric pressure is compressed	
	adiabatically so that it's volume reduces to half	
	of its original volume. Given that gamma= 1.4	
8	Describe absolute scale of temperature . Why is	
	it taken as a standard scale? What is the	
	meaning of absolute zero on this scale?	

Department of Mathematics

Program: BA / BSc

Partial Differential Equations

SCHEME

Course Name	Partial Differenti	al Equations	Course Type	Theory
Course Code	12 BAM 232/ 1	2BSM 232	Class	BA / BSc III Sem.
InstructionPer week Lectures: 4, Tutorial:1DeliveryTotal No. Classes Per Sem: 44(L), 11(T)Assessment in Weightage:Sessional (20%), End Term Exams (80%)		0%)		
Course Coordinator	Dr. Sunny Kapoor	Course Instructor	Theory: Dr. Su	nny Kapoor

COURSE OVERVIEW

Partial Differential Equations is the branch of Mathematics which deals with an equation containing an unknown function of two or more variables and its partial derivative with respect to these variables. Partial differential equations are more important in calculus. It has fundamental importance in many areas of physics and engineering. It is widely used to model many systems in different fields such as Heat equation, Wave equation, Laplace equation, Astronomy, Cosmology, Quantum Mechanics, Fluid Dynamics, Electromagnetism, Artificial Intelligence, Language Model and Mathematical finance. It helps us to solve linesr partial differential equations of first and higher orders.

PREREQUISITE

Differentiation, Calculus, Algebra, Integration.

COURSE OBJECTIVE

The objective of this course is to develop a clear understanding of concepts of linear partial differential equations of first order, second order and higher order derivatives and computational solution methods for PDE. It helps the students to understand analogies between mathematical descriptions of different phenomenon in physics and engineering, classify PDE'S, apply analytical methods and physically interpret the solutions.

COURSE OUTCOMES (COs)

After the completion of the course, the student will be able to:

CO No.	Course Outcomes
1	This course will enable students to form partial differential equation by eliminating
	arbitrary constants.
2	Students will be able to apply a range of techniques to solve first & second order partial
	differential equations.
3	They will be able to classify the linear partial differential equations of second degree as

	hyperbolic, parabolic and ellipse types.
4	They will be able to reduce second order linear partial differential equations to canonical forms and find their solutions.
5	It will enable them to solve Cauchy problem for second order partial differential equations.
6	It will help them to model physical phenomena using partial differential equations such as the heat and wave equations.

COURSE CONTENT

Content

Section – I Partial differential equations: Formation, order and degree, Linear and Non-Linear Partial differential equations of the first order: Complete solution, singular solution, General solution, Solution of Lagrange's linear equations, Charpit's general method of solution. Compatible systems of first order equations, Jacobi's method.

Section – II Linear partial differential equations of second and higher orders, Linear and non-linear homogeneous and non-homogeneous equations with constant co-efficients, Partial differential equation with variable co-efficients reducible to equations with constant coefficients, their complimentary functions and particular Integrals, Equations reducible to linear equations with constant co-efficients.

Section – III Classification of linear partial differential equations of second order, Hyperbolic, parabolic and elliptic types, Reduction of second order linear partial differential equations to Canonical (Normal) forms and their solutions, Solution of linear hyperbolic equations, Monge's method for partial differential equations of second order.

Section – IV Cauchy's problem for second order partial differential equations, Characteristic equations and characteristic curves of second order partial differential equation, Method of separation of variables: Solution of Laplace's equation, Wave equation (one and two dimensions), Diffusion (Heat) equation (one and two dimension) in Cartesian Co-ordinate system.

S. No	Topic to be Delivered	Tutorial Plan	No. of Lectures Required	Unit
1	Formation of Partial Differential equation by elimination of arbitrary constants		2	1

LESSON PLAN (THEORY AND TUTORIAL CLASSES)

2	Formation of Partial Differential equation by elimination of arbitrary functions	Practice questions on formation of PDE	2	
3	Solution of First order linear PDE		3	
4	First order Non- linear PDE- Compatibility & Solution	Practice questions on Solution of Lagrange's Linear Equation	1	
5	Charpit's Method		2	
6	Some standard forms & their solution	Practice Questions on Charpit's Method	2	
7	Solution by Jacobi's Method		2	
8	Solution of Homogeneous linear PDE with constant co-efficients	Practice questions on solution of Homogeneous Linear PDE	4	2
9	Solution of non Homogeneous linear PDE with constant coefficients	Practice questions on solution of Non-Homogeneous Linear PDE	3	
10	Partial Differential equations with variable co-efficients Reducible to equations with constant coefficients	Practice questions on solution of PDE with variable coefficients	2	
11	Classifications and canonical forms of second order linear PDE	Practice Questions on Canonical forms	5	3
12	Monge's method for PDE of second order	Practice Questions on Monge's Method	4	
13	Characteristic equations ad characteristic curves Cauchy's problem		2	4
14	Solution of one dimensional and two dimensional wave Equation	Practice Questions on Cauchy's Problem	4	
15	Solution of one dimensional and	Practice questions on solution of	3	

	two dimensional Heat Equation	Wave Equations		
16		Practice questions on solution of	3	
	Solution of one dimensional and	Heat & Laplace Equations		
	two dimensional Laplace			
	Equation			

Text Book

Partial Differential Equations (New College), Jeevansons Publications.

Reference Books

- D.A. Murray : Introductory Course in Differential Equations. Orient Longaman (India) . 1967
- □ Erwin Kreyszing : Advanced Engineering Mathematics, John Wiley & Sons, Inc., New York, 1999
- □ A.R. Forsyth : A Treatise on Differential Equations, Macmillan and Co. Ltd
- □ Ian N.Sneddon : Elements of Partial Differential Equations, McGraw Hill Book Company, 1988
- □ Frank Ayres : Theory and Problems of Differential Equations, McGraw Hill Book Company, 1972
- □ J.N. Sharma & Kehar Singh : Partial Differential Equations

Web/Links for e-content

- https://youtu.be/N7qVGiOafls?si=kzd7Lj-9fklnMZwW
- https://youtu.be/L_ulJo71Tg0?si=0_wg35ixdlQ5ol8A
- □ <u>https://youtu.be/vZEN4NXhmag?si=qmLQu-3GLFX-TbN2</u>

PRACTICE QUESTIONS (QUESTION BANK)

S No	Problem
1	Prove that the partial differential equation of the set of all cones having their vertex at the origin is $px + qy = z$.
2	Solve $y^2p + x^2q = x^2y^2z^2$.
3	Find the complete integral, general integral and the singular integral of $2(z + xp + yq) = yp^2$.
4	Solve the partial differential equation $q^2 = z^2(1 - p^2)p^2$.

5 Find the characteristic of: $x^{2}\frac{\partial^{2}u}{\partial x^{2}} + 2xy\frac{\partial^{2}u}{\partial x \partial y} + y^{2}\frac{\partial^{2}u}{\partial x^{2}} = 0.$ Solve : $(p^2 + q^2)y = qz$ using Charpit's method. 6 7 Find the complete integral of $p_3x_3(p_1 + p_1) + x_1 + x_2 = 0$ by using Jacobi's method. 8 Solve :yzp + zxq = xy. Form the partial differential equation by eliminating arbitrary function from $z = f(\frac{xy}{z})$. 9 Solve : $(3D^2 - 2D'^2 - D - 1)z = 4e^{x+y}\cos(x+y)$. 10 Solve $:x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial x^2} = x^2 y.$ 11 Solve : $(D^2 - DD' - 2D)z = sin (3x + 4y)$ 12 Solve : $(D^2 - DD' - 2D'^2)z = (2x^2 + xy - y^2)sinxy - cosxy.$ 13 Reduce the equation $x^2r - 2xys + y^2t - xp + 3yq - \frac{8y}{x} = 0$ to the canonical form and hence 14 solve it. Classify and reduce the equation $\frac{\partial^2 z}{\partial x^2} - x^2 \frac{\partial^2 z}{\partial y^2} = 0$ to canonical form. 15 16 Classify and reduce the equation $\frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = y$ to canonical form. 17 Solve the one dimensional diffusion equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial u}{\partial t}$ in the region $0 \le x \le \pi, t \ge 0$ Subject to the conditions: $u(0,t) = u(\pi,t) = 0$ for all t (i) u is finite as $t \rightarrow \infty$ (ii) (iii) $u(x,0) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \pi \end{cases}$

Find the solutIon of $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial u}{\partial t}$, 0 < x < p, t > 0 for which u(0, t) = u(1, t) = 0 and $u(x, 0) = k \sin 2\pi x$. Solve the Cauchy problem, described by the equation $\frac{\partial^2 z}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 z}{\partial t^2} = 0$, c > 0 subject to condition z(x, 0) = f(x) and $\left[\frac{\partial z}{\partial y}\right]_{t=0} = g(x)$.

Department of Mathematics

Program: BA/B.sc Mathematics

Statics (12BAM233)

SCHEME

CourseName	Statics		CourseType	Theory
CourseCode	12BAM233		Class	BA/Bsc -3rdsem
Instruction Delivery	Per week Lectures: 4 Fotal No. Classes Per Sem:45(L),5(T) Assessment in Weightage: Sessional(20%),End Term Exams(80%)		%)	
Course Coordinator	Ms. Sonam	Course Instructors	Theory:Ms.	Sonam

COURSE OVERVIEW

This covers these topics: forces ,parallel forces ,friction, null lines nad wrenches

PREREQUISITE

Basic knowledge of Science , Physics

COURSE OBJECTIVE

Learn how force, moment, and coupling affect rigid bodies, calculate forces in frames and trusses, and study friction between rigid bodies.

COURSE OUTCOMES(COs)

After the completion of the course, the student will be able to:

CONo.	CourseOutcomes
1	The Students will able to define Resultant, Component of a Force, Prove the
	Parallelogram of Forces, Triangle of Forces, Converse of the Triangle of forces,
	lami's theorem, Like and unlike parallel forces, Moment of a force and Couple with
	examples
2	This course will help the students to learn the analytical conditions of equilibrium of
	coplanar forces, discuss Friction, Forces of Friction, Cone of Friction, Angle of
	Friction and Laws of friction ,concept of centre of gravity
3	The students will acquire the knowledge of virtual work and learn the concept of
	forces in three dimensions
4	The students will understand the concept of wrenches ,null lines and planes ,stable
	and unstable equilibrium

COURSE CONTENT

Content

UNIT-I

Composition and resolution of forces. Parallel forces. Moments and Couples.

UNIT-II

Analytical conditions of equilibrium of coplanar forces. Friction. Centre of Gravity.

UNIT-III

Virtual work. Forces in three dimensions. Poinsots central axis.

UNIT-IV

Wrenches. Null lines and planes. Stable and unstable equilibrium.

LESSON PLAN (THEORY AND TUTORIAL CLASSES)

L.No	Topic to be Delivered	Tutorial Plan	Unit
1	Introduction to basics definitons		
	related to mechanics :rigid body		
	,force, weight ,mass etc. Results		
	and formulae for finding		
	Resultant.		2
2	Introduction to friction, types of		
	friction ,basics defintions		
3	Articles related to force of		
	friction		
4	Articles related to force of		
	friction		
5	Numericals related to force of		
	friction	Problems discussion	
1			

6	Problems on equilibrium of rods and ladders		
7	Numericals on ladder and rod		
	topic		2
8	Centre of gravity defintions and		
	formulaes		
9	Numericals		
10	Centre of gravity of a body by		
	integration		
11	Numericals		
12	Forces in three		
	Dimensions: introduction to		3
	decometry paralleleniped its		
	vertices edges diagonals		
13	Working rules for numerical:		
10	How to find components of		
	forces, moments, equation of		
	central axis ,resultant ,system	Problems Discussion	
	reduced to single force ,pitch		
1/	Numericals Continue		
14			
15	Numericals Continue		
16	Theorems		
17	Wrenches:basics and Theorems		
18	Theorems		4
			1

19	Numericals		
20	Null lines and null planes: basics and theorems		
21	Numericals	Problems Discussion	
22	Numericals		4
23	Stable ,unstable and neutral equilibrium		4
24	Numericals		
25	Numericals		
26	Forces acting at a point:Basics formulae to find magnitude and direction of resultant and Numericals		1
27	Resolved parts numericals		
28	Triangle law of forces		
29	lami's theorem and converse of lami's theorem		1
30	Polygon law of forces and, ,Resultant of any number of concurrent and coplanar forces		
31	Introduction to like and unlike parallel forces	Problems Discussion	
32	Analogue of Lami's theorem,centre of parallel forces Resolved part for parallel forces	-	1
34	Numerical practice		
35	Moments:definitions,sign o moment of a force about a point		
36	Numericals		
37	Numericals continue]	
38	Problems discusion]	1
39	Couples:definition, sign of moment of couple, equilibrium of two couples		I
40	Numericals		

41	Numericals		
42	Virtual Work:definition,numericals	Problems Discussion	3
43	Theorems		
44	Numericals		
45	Numericals		

TextBook

Jeevansons Publications

Reference Books

- 1. S.L. Loney : Statics, Macmillan Company, London
- 2. R.S. Verma : A Text Book on Statics, Pothishala Pvt. Ltd., Allahabad.

Web/Links for e-content

<u>NOTES</u> <u>https://drive.google.com/drive/folders/19sg8Fq3JZyOfh_CQ</u> <u>zcX4cifZnvjzDVtW</u>

MDU Question Papers https://drive.google.com/file/d/11wOmi7t90Mp2XvQn87GL UYiz3APv5lQ3/view?usp=drivesdk

PRACTICE QUESTIONS (QUESTION BANK)

SNo	Problem
	ShortQuestions
1	Define wrench or screw.
2	State laws of limiting friction
3	If C is the middle point of AB then find the resultant of two forces OA and OB
4	State converse of lami's theorem
5	Define wrench and poinsot's central axis
6	Define coefficient of friction
7	Write m- n theorem
8	Find C.G. of a uniform triangular lamina.
9	Three equal forces acting at a point are in equilibrium.find the angle between them.
10	Define angle of friction
11	Find the thrust of an inextensible rod.
12	Define central axis in three dimensions and write its characteristics.
3	Find the centre of gravity of a lamina in the form of a triangle.
14	Write the condition when the system of forces in three dimension reduces to a single force.
15	State triangle law of forces
16	Write the condition when the system of forces in three dimension reduces to a single force.
17	Prove that the resultant of two forces OA and OB is a force 2 OC ,where C is the middle point of A B
18	Prove that the resultant of two forces OA and OB is a force 2 OC ,where C is the middle point of A B
19	Forces of 4,6,8,10 and 12 kg act qlong the sides AB,BC,CD,DA and diagonal AC of a Square ABCD. Find the sum of the moment of thr forces about B.
20	Define null lines, null plane and null point.
21	Define friction and force of friction
22	Define like and unlike forces
23	Write the conditions of equilibrium of a system of coplanar forces acting on a rigid body
24	If D and E are the middle points of the sides AB and AC of a triangle ABC, prove that the resultant of the forces represented by BE and DC is represented in magnitude and direction by 3/2 BC
25	Find a point O inside a quadrilateral ABCD such that if a particle placed at it be acted upon by forces represented by forces represented by OA ,OB ,OC ,OD ,it will be in equilibrium.

26	AB and AC are two strings 9 m. and 12 m. long attached to pegs B and C at a horizontal
	distance 15 m apart. Find the tensions in the strings when a weight of 10 kg is suspended
	from A.
27	A weight of 26 N is suspended by two light inelastic strings of length 5 m and 12 m from two
	points at the same level and 14 m apart. Find the tensions in they strings.
28	Forces of 6, 8, 12 kg. wt. act along BC ,CA ,AB of the sides of a triangle of lengths 3,4,5 cm
	respectively. Show that their resultant is a force of 2 kg. Wt. acting parallel to AB.
29	ABCDEF is a regular hexagon. Find the direction and magnitude of resultant of force equal to
	7,18,5,9 and 19 kg wt. acting at A respectively along AB,CA,AD,AE,AF.
20	
30	A heavy uniform rod 4m long rest horizontally on two pegs which are 1 m apart. A Weight
	of 10 kg suspended from one end or a weight of 4 kg suspended from the other end will jusy
	tilt the rod up. Find the weight of the rod and the distances of the pegs from the centre of the
01	rod.
31	To find the greatest inclination of a rough plane on which a heavy particle can rest inlimiting
	equilibrium without the application of any other force
32	To find the limits between which a force
	must lie in order to keep a body in
	equilibrium on a rough inclined plane, when
	the force acts horizontally.
33	A heavy body is placed on a rough inclined plane. To find the force just sufficient to
	move the body up the plane , the force acting in a vertical plane through the line of
	greatest slope through the body.
34	The centre of gravity of a uniform parallelogram lamina.
35	Find the centroid(C.G.) of a plane lamina in form of a quadrant of an ellipse when matter is
	distributed uniformly.
36	Any system of forces acting on a rigid body can be reduced in general to a force acting at an
	arbitrary chosen point of the body and a couple.
37	Show that among null lines of any system of forces, four generators of any hyperboloid, two
	belonging to one system of generators and two to the other.
38	Find the null point of the plane $x+y+z=0$ for the system X,Y,Z;L,M,N.
39	The axes of two given wrenches intersect at right angles, their intensities are X and Y and
	their pitches are px and py. If the pitched are given find the locus of the central axis
	prenes de pri did pj : il die prened die Siven , find die foeds of die centul dris.
40	Show that every given system of forced acting on a rigid body can be reduced to a wrench
41	Prove that any wrench may be resolved into two wrenched, whose axes intersect at right
	angles ,on an infinite number of ways.
42	Three forces P,Q and R act along three non intersecting edges of a cube , find the central
	axis

Department of Physics

Program: B.Sc. Non Medical

Session (2024-25)

Computer Programming & Thermodynamics (PHY 301) SCHEME

Course Name	2 Computer Programming &		Course Type	Theory
	Thermodynamics			
Course Code	e PHY 301		Class	B.Sc. N.M. III Sem
Instruction	struction Per week Lectures: 6, Theory: 02, Tutorial:0, Practical: 04			
Delivery	Total No. Classes Per Sem: 72(L), 24(T), - 48(P) Assessment in Weightage: Sessional (20%), End Term Exams (80%)			
Course	Dr. Savita Devi	Course Instructors	Theory: Dr. Sav	ita Devi
Coordinator			Practical: Dr.	Savita Devi

COURSE OVERVIEW

Computer is a very versatile general purpose electronic device which processes large amount of information at high speed and produces result in a required format. Now a days computers are being used in almost every field of life. Thermodynamics deals with the study of energy transformations like heat energy into various other forms of energy and the relationship among various physical properties of substances which are affected by these transformations

PREREQUISITE

Computer, heat, temperature

COURSE OBJECTIVE

Objective of computer programming is to understand the Computer organisation, algorithm development and fortran preliminaries. Objective of thermodynamics is to understand the concept of heat in motion.

COURSE OUTCOMES (COs)

After the completion of the course, the student will be able to:

CO No.	Course Outcomes
1	Understand the formation of algorithm and flowcharts of a given program
2	Define and explain the Physics governing heat laws
3	Get an introduction to the discipline and role of computer programming and thermodynamics in modern society
4	Solve the problems based on programming and thermodynamics

COURSE CONTENT

Content

Computer Programming: Computer organisation, binary representation, algorithm development, flowcharts and their interpretation

FORTRAN preliminaries: Integer and floating point arithmetic expression, built in functions, executable and non executable statements, input and output statements, Formats, IF, DO and GO TO statements, dimension arrays, statement function and function subprogram.

Thermodynamic I: Second law of thermodynamics, Carnot theorem, absolute scale of temperature, absolute zero, entropy, show that dQ/T = Q.

T-S diagram, Nernst heat law, Joule's free expansion, Joule Thomson experiment, Joule Thomson effect, liquification of gases, air pollution due to internal combustion engine.

Thermodynamic II: Derivation of Claucius Claperyron latent heat equation, phase diagram and triple point of a substance, development of Maxwell thermodynamical relations, application of Maxwell relations in the derivations of relations between entropy specific heats and thermodynamic variables Thermodynamic functions; Internal energy U, Helmholtz function F, enthalpy H, Gibbs function G and the relation between them.

L. No	Topic to be Delivered	Tutorial Plan

LESSON PLAN (THEORY AND TUTORIAL CLASSES)

L. No	Topic to be Delivered	Tutorial Plan	Unit
1	Computer organisation		
2	Binary representation		1
3	Algorithm development	Define, expression,	1
	Flowcharts and their	explanation	
4	interpretations		
5			
	FORTRAN preliminaries		

6	Integer and floating point arithmetic expression	Itroduction, derivation	
7	Built in functions	Define, expression,	1
8	Executable and non	explanation	
	executable statements		
9	Input and output statements		
10	Formats		
11	IF DO and GO TO statements	State, expression, explanation	
12	Dimension arrays statement		
	function and functions of		
	subprogram		
13	Revision	Discuss and Practice questions	
14	Question on interference	on programming	
15			
	Thermodynamics	introduction	2
16	Second law of	Expression and explanation	2
10	thermodynamics		
17	Carnot theorem		
18	Absolute scale of temperature	State, Expression and	
19	Absolute zero	explanation	
20	Entropy		
21	dO/T = O	Explanation and derivation	
22	T- S diagram Nernst heat law	State, expression and	
23	Joules free expansion	explanation	
24	Joules Thomson experiment	State, expression	
25	Joule Thomson effect	T . 1 . 1	2
26	Liquification of gases	Introduction	2
27	Air pollution due to internal	State employed and employed	
20	Compution engine	state, expression and explanation	
28	Kevision	Practice the questions on	
29	Questions	Thermodynamics -I	
30	Thermodynamics II	Introduction	

31	Derivation of Claucius	State, expression and	3
	Claperyron latent heat of	explanation	
	equation		
32	Face diagram and triple point of		

	a substance		
33	Development of Maxwell	IDerivation and explanation	
00	thermodynamical relations	I I I I I I I I I I I I I I I I I I I	
34	Application of Maxwell	State, discussion	
_	relations in the derivation of		
	relations between entropy		
	specific heat and		
	thermodynamic variables		
35	Thermodynamic functions		
36	Internal energy	State, expression and	
37		explanation	
		State expression and	
		explanation	
		explanation	
	Helmhols functions		
38	Enthalpy		
		State, expression and	
		explanation	
		3	
30	Gibbs function		
40	Entropy change in reversible f	State, expression and	
40	process	explanation, Discussion	
41	Entropy change in irreversible		
	process, Principle of		
	degradation of energy		
42	RevisionQuestion on		
	polarization		
43		·	
44			

Text Book

Dr. M.S.Sheoran, Jaivir Singh, Amar Singh, Pradeep Ahlawat

Reference Books

Dr.S.D.Aghav, V.K.Dhas, Dr.P.S. Tambade, B.M.Laware, S.R.De Groot and P. Mazur

Web/Links for e-content

"ebookselibrary.com/institute/book-detail/higher-education/physics/COMPUTER-PROGRAMMING,-THERMODYNAMICS-1219#" https://www.ebookselibrary.com/institute/bookdetail/higher-education/physics/COMPUTER-PROGRAMMING,-THERMODYNAMICS-1219#

PRACTICE QUESTIONS (QUESTION BANK)

Sr. No.	Problem	
1	Write the preliminary to draw a flowchart	
2	Give limitation of flowcharts	
3	Explain formatted input output statements used	
	in 4th run	
4	State and explain the first and second law of	
	thermodynamics discuss the significance of the	
	second law	
5	State and prove the carnot theorem	
6	Discuss joule Thomson experiment	
7	A gas atmospheric pressure is compressed	
	adiabatically so that it's volume reduces to half	
	of its original volume. Given that gamma= 1.4	
8	Describe absolute scale of temperature . Why is	
	it taken as a standard scale? What is the	
	meaning of absolute zero on this scale?	

Department of Hindi

Program: Bsc.

SCHEME

Course Name			Course Type	Theory
Course Code			Class	Bsc.3rd. sem.
Instruction Delivery	Per week Lectures: 5, 7 Total No. Classes Per S Assessment in Weighta	Futorial:1, Practical: - Sem: 20(L), 15(T) ge: Sessional (10%), End	Term Exams (409	%)
Course Coordinator	Mrs. Kiran Devi	Course Instructors	Mrs. Kiran Dev	i

COURSE OVERVIEW

PREREQUISITE

COURSE OBJECTIVE

COURSE OUTCOMES (COs)

CO No.	Course Outcomes
1	
	$\Box \Box \Box \Box \Box, \Box \Box, \Box \Box, \Box$

2	
3	
4	

COURSE CONTENT

Content			

LESSON PLAN (THEORY AND TUTORIAL CLASSES)

L. No	Topic to be Delivered	Tutorial Plan	Unit
1			
			1
2			

3		
4		
5		

6		
		1
7		
8		
Ŭ		
9		
10		
10		
11	1	

12		
13		
15		
1.4		
14		
15		
15		
16		
17		
10		
18		
19		
1)		
1	1	

20		
21		
22		
23		
24		
24		
25		
25		
26		
		2
27		
28		
29		
30		
50		
1		1

31		2	
32			
33			
34			
35			
36			
37			
38			
39			
40			
41		4	
42		+	
43			
44			
45			

Text Book

Reference Books

Web/Links foe-content

1. https://www.sankritiias.com

2 .https://www.parentsassembly.com.

PRACTICE QUESTIONS (QUESTION BANK)

S No	Problem
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
15	
14	
4 -	
15	

16	
17	
18	
19	
20	
21	
22	
23	1. Infection 2. Membrane 3. Parasite 4. Photo catalyst 5. Physiology 6. Hydration 7. Plasma 8. Projection 9. Velocity 10. Pollution
24	
25	
26	
27	
28	
29	

30	
31	

32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	

48	
49	

50